
On the connection coefficients and recurrence relations arising from expansions in series of

Laguerre polynomials

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2003 J. Phys. A: Math. Gen. 36 5449

(http://iopscience.iop.org/0305-4470/36/20/307)

Download details:

IP Address: 171.66.16.103

The article was downloaded on 02/06/2010 at 15:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/36/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 36 (2003) 5449–5462 PII: S0305-4470(03)58518-3

On the connection coefficients and recurrence
relations arising from expansions in series of
Laguerre polynomials

E H Doha

Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

E-mail: eiddoha@frcu.eun.eg

Received 15 January 2003, in final form 14 March 2003
Published 7 May 2003
Online at stacks.iop.org/JPhysA/36/5449

Abstract
A formula expressing the Laguerre coefficients of a general-order derivative
of an infinitely differentiable function in terms of its original coefficients
is proved, and a formula expressing explicitly the derivatives of Laguerre
polynomials of any degree and for any order as a linear combination of suitable
Laguerre polynomials is deduced. A formula for the Laguerre coefficients of
the moments of one single Laguerre polynomial of certain degree is given.
Formulae for the Laguerre coefficients of the moments of a general-order
derivative of an infinitely differentiable function in terms of its Laguerre
coefficients are also obtained. A simple approach in order to build and
solve recursively for the connection coefficients between Jacobi–Laguerre and
Hermite–Laguerre polynomials is described. An explicit formula for these
coefficients between Jacobi and Laguerre polynomials is given, of which
the ultra-spherical polynomials of the first and second kinds and Legendre
polynomials are important special cases. An analytical formula for the
connection coefficients between Hermite and Laguerre polynomials is also
obtained.

PACS number: 02.30.Gp
Mathematics Subject Classification: 42C10, 33A50, 65L05, 65L10

1. Introduction

The problem of approximating solutions of differential equations by spectral methods, known
as Galerkin approximations, involves the projection onto the span of some appropriate set of
basis functions, typically arising as the eigenfunctions of a singular Sturm–Liouville problem.
The members of the basis may satisfy automatically the auxiliary conditions imposed on the
problem, such as initial, boundary or more general conditions. Alternatively, these conditions
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may be imposed as constraints on the expansion coefficients, as in the Lanczos τ -method
(Lanczos 1957).

It is well known (Canuto et al 1988) that the eigenfunctions of certain singular Sturm–
Liouville problems allow the approximation of functions in C∞[a, b] whose truncation error
approaches zero faster than any finite negative power of the number of basis functions (retained
modes) used in the approximation, as that number (order of truncation N) tends to ∞. This
phenomenon is usually referred to as ‘spectral accuracy’ (Gottlieb and Orszag 1977).

It is of fundamental importance to know that the choice of the basis functions is responsible
for the superior approximation properties of spectral methods when compared with the finite
difference and finite element methods.

Spectral methods provide a computational approach which has achieved substantial
popularity over the last three decades. They have gained new popularity in automatic
computations for a wide class of physical problems in fluid and heat flow. The principal
advantage of spectral methods lies in their ability to achieve accurate results with substantially
fewer degrees of freedom.

Spectral methods have been used extensively in the solution of the boundary value
problems and computational fluid dynamics, see for instance, Fox and Parker (1972), Gottlieb
and Orszag (1977), Canuto et al (1988) and Doha and Abd-Elhameed (2002). In most of
these applications, a formula is used that relates the expansion coefficients of derivatives
appearing in the differential equation to those of the function itself. For the Galerkin and tau
variants of the spectral methods, explicit expressions for the expansion coefficients for the
solution are needed. Karageorghis (1998a) obtained an expression when the basis functions
of expansion are shifted Chebyshev polynomials T ∗

n (x), x ∈ [0, 1]. A corresponding formula
for Legendre polynomials Pn(x), x ∈ [−1, 1], is derived by Phillips (1988). Doha (1991) has
obtained a more general formula when the basis functions are the ultraspherical polynomials
C(α)

n (x), x ∈ [−1, 1], α ∈ (− 1
2 ,∞)

; formulae for the first and second kinds of Chebyshev
polynomials and Legendre polynomials Tn(x), Un(x) and Pn(x) are given as special cases
of C(α)

n (x). A most general formula when the basis functions are the Jacobi polynomials
P

(α,β)
n (x), x ∈ [−1, 1], α > −1, β > −1, is given in Doha (2002). Another formula when

the basis functions are the Hermite polynomials is obtained in Doha (2003).
A more general situation which often arises in the numerical solution of differential

equations with polynomial coefficients in spectral methods is the evaluation of the expansion
coefficients of the moments of high-order derivatives of infinitely differentiable functions. A
formula for the shifted Chebyshev coefficients of the moments of general-order derivatives of
an infinitely differentiable function is given in Karageorghis (1998b). Corresponding results
for Chebyshev polynomials of the first and second kinds, Legendre, ultraspherical and Hermite
polynomials are given in Doha (1994), Doha and El-Soubhy (1995), Doha (1998) and Doha
(2003) respectively.

Up to now, and to the best of our knowledge, many formulae corresponding to those
mentioned previously are not known and traceless in the literature for the Laguerre expansions.
This motivates our interest in such polynomials. Another motivation is that the theoretical
and numerical analyses of numerous physical and mathematical problems very often require
the expansion of an arbitrary polynomial or the expansion of an arbitrary function with its
derivatives and moments into a set of orthogonal polynomials. This is in particular true (for
Laguerre polynomials) in quantum mechanical studies of physical systems, where the equation
of motion or Schrödinger equation is a second-order differential equation with polynomial
coefficients. This is the case not only for the solution of the Schrödinger, Klein–Gordan and
Dirac equations for the Coulomb field but also for many other potentials, as shown for example
in Bagrov and Gitman (1990) and Nikiforov and Uvarov (1988).
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The paper is organized as follows. In section 2, we give some properties of Laguerre
polynomials. In section 3, we prove a theorem which relates the Laguerre expansion
coefficients of the derivatives of a function in terms of its original expansion coefficients.
An explicit expression for the derivatives of Laguerre polynomials of any degree and for
any order as a linear combination of suitable Laguerre polynomials themselves is also
deduced. A theorem which gives the Laguerre coefficients of the moments of one single
Laguerre polynomial of any degree is considered in section 4. In section 5, we state and
prove a theorem which expresses explicitly the Laguerre coefficients of the moments of
a general-order derivative of an infinitely differentiable function in terms of its Laguerre
coefficients. Application of these theorems for solving ordinary differential equations with
varying coefficients, by reducing them to recurrence relations in the expansion coefficients of
the solution, is given in section 6. A simple approach in order to build and solve recursively
for the connection coefficients between two families of orthogonal polynomials as solutions
of second-order differential equations is described in section 7.

2. Some properties of Laguerre polynomials

The Laguerre polynomials are a sequence of polynomials
{
L(α)

n (x), n = 0, 1, 2, . . .
}
, each of

degree n, satisfying the orthogonality relation∫ ∞

0
e−xxαL(α)

m (x)L(α)
n (x) dx = �(n + α + 1)

n!
δmn α > −1. (1)

It is worth mentioning that many properties of Laguerre polynomials may be found in Rainville
(1960). The Laguerre polynomials may be generated by using Rodrigue’s formula

L(α)
n (x) = x−α ex

n!

dn

dxn
[e−xxn+α]. (2)

The following two recurrence relations are of fundamental importance in developing the
present work. These are

(n + 1)L
(α)

n+1(x) = (2n + α + 1 − x)L(α)
n (x) − (n + α)L

(α)

n−1(x) n = 0, 1, 2, . . . (3)

with L
(α)

−1(x) = 0, and

L(α)
n (x) = D

[
L(α)

n (x) − L
(α)

n+1(x)
]

n = 0, 1, 2, . . . (4)

where D ≡ d
dx

. Note that the recurrence relation (3) may be used to generate the Laguerre

polynomials starting from L
(α)

0 (x) = 1 and L
(α)

1 (x) = (α + 1 − x).
Suppose now we are given a function f (x) which is infinitely differentiable in the interval

[0,∞), then we can write

f (x) =
∞∑

n=0

anL
(α)
n (x) (5)

and for the qth derivative of f (x),

f (q)(x) =
∞∑

n=0

a(q)
n L(α)

n (x) a(0)
n = an. (6)

Moreover, if f (x) satisfies

f (x) = O(eαx) x → ∞
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for some α < 1
2 , it can be shown (cf Gottlieb and Orszag (1977)) that the Laguerre expansion

f (x) =
N∑

n=0

anL
(α)
n (x)

converges faster than algebraically as the number of terms N → ∞.

3. Relations between the coefficients a(q)
n and an and the qth derivative of L(α)

n (x)

Theorem 1. If f (x) is infinitely differentiable and expanded as in (5), and the qth derivative
of f (x) is expressed as in (6), then

a(q)
n =

n∑
j=0

(
n − j + q − 1

q − 1

)
aj (7)

and

DqL(α)
n (x) = (−1)q

n−q∑
j=0

(
n − j − 1

q − 1

)
L

(α)
j (x) n, q � 1. (8)

Proof.

f (q+1)(x) =
∞∑

n=0

a(q+1)
n L(α)

n (x)

and on differentiating (6), and making use of (4), we get

a(q+1)
n − a

(q+1)

n−1 = a(q)
n n = 1, 2, . . . , q � 0

which immediately gives

a(q+1)
n =

n∑
j=0

a
(q)

j

and this in turn yields

a(1)
n =

n∑
j=0

aj a(2)
n =

n∑
j=0

(n − j + 1)aj a(3)
n =

n∑
j=0

(n − j + 1)(n − j + 2)

2
aj

and finally

a(q)
n =

n∑
j=0

(n − j + 1)(n − j + 2) · · · (n − j + q − 1)

(q − 1)!
aj

i.e.

a(q)
n =

n∑
j=0

(
n − j + q − 1

q − 1

)
aj

which proves (7). From the properties of Laguerre polynomials, it can be easily shown that

DL(α)
n (x) = −

n−1∑
j=0

L
(α)

j (x)

which immediately gives

DqL(α)
n (x) = (−1)q

n−q∑
j=0

(
n − j − 1

q − 1

)
L

(α)

j (x)

and this completes the proof of theorem 1. �
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4. Laguerre coefficients of the moments of one single Laguerre polynomial of any degree

For the evaluation of Laguerre coefficients of the moments of higher-order derivatives of
infinitely differentiable functions, the following theorem is needed.

Theorem 2.

xmL
(α)
j (x) =

2m∑
n=0

amn(j)L
(α)
j+m−n(x) m � 0 j � 0 (9)

where

amn(j) = (−1)m−n(m!)2

�(j + m − n + α + 1)

min(j+m−n,j)∑
k=max(0,j−n)

(
j + m − n

k

)
�(m + k + α + 1)

(j − k)!(n − j + k)!(m − j + k)!
.

(10)

Proof. We use the induction principle to prove this theorem. In view of the recurrence relation
(3), we may write

xL
(α)
j (x) = −(j + 1)L

(α)

j+1(x) + (2j + α + 1)L
(α)
j (x) − (j + α)L

(α)

j−1(x) j � 0

which may be put in the form

xL
(α)
j (x) = a10(j)L

(α)
j+1(x) + a11(j)L

(α)
j (x) + a12(j)L

(α)
j−1(x) (11)

this in turn shows that (9) is true for m = 1. Proceeding by induction, assuming that (9) is
valid for m, we want to prove that

xm+1L
(α)
j (x) =

2m+2∑
n=0

am+1,n(j)L
(α)

j+m−n+1(x). (12)

From (11) and assuming the validity of (9) for m, we have

xm+1L
(α)
j (x) =

2m∑
n=0

amn(j)
[
a10(j + m − n)L

(α)
j+m−n+1(x)

+ a11(j + m − n)L
(α)

j+m−n(x) + a12(j + m − n)L
(α)

j+m−n−1(x)
]
.

Collecting similar terms, we get

xm+1L
(α)

j (x) = am0(j)a10(j + m)L
(α)

j+m+1(x) + [am1(j)a10(j + m − 1)

+ am0(j)a11(j + m)]L(α)
j+m(x) +

2m∑
n=2

[amn(j)a10(j + m − n)

+ am,n−1(j)a11(j + m − n + 1) + am,n−2(j)a12(j + m − n + 2)]L(α)
j+m−n+1(x)

+ [am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1)]L(α)
j−m(x)

+ am,2m(j)a12(j − m)L
(α)

j−m−1(x). (13)

It can be easily shown that

am+1,0(j) = am0(j)a10(j + m)

am+1,1(j) = am1(j)a10(j + m − 1) + am0(j)a11(j + m)

am+1,n(j) = amn(j)a10(j + m − n) + am,n−1(j)a11(j + m − n + 1)

+ am,n−2(j)a12(j + m − n + 2)

am+1,2m+1(j) = am,2m(j)a11(j − m) + am,2m−1(j)a12(j − m + 1)

am+1,2m+2(j) = am,2m(j)a12(j − m)
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and accordingly, formula (13) becomes

xm+1L
(α)
j (x) =

2m+2∑
n=0

am+1,n(j)L
(α)
j+m−n+1(x)

which completes the induction and proves the theorem. �

It is worth noting that, recalling the definition of Pochhammer’s symbol,

(z)n = �(z + n)

�(z)
= (−1)n�(1 − z)

�(1 − z − n)

and the identity(n

k

)
= (−1)k(−n)k

k!

formula (10) can be written in terms of a 3F2 hypergeometric function of unit argument

amn(j) = (−1)m−n(m!)2�(m + α + 1)

j !(n − j)!(m − j)!�(j + m − n + α + 1)

× 3F2


−(j + m − n), −j, m + α + 1;

; 1
n − j + 1, m − j + 1;


 .

Corollary 1. It is not difficult to show that

xmL
(α)
j (x) =

j+m∑
n=0

am,j+m−n(j)L(α)
n (x) j � 0 m � 0 (14)

and

xm =
m∑

n=0

am,m−n(0)L(α)
n (x) m � 0 (15)

where

am,m−n(0) = (−1)nm!�(m + α + 1)

(m − n)!�(n + α + 1)
.

This result is in complete agreement with that given in Rainville (1960, p 207).

5. Laguerre coefficients of a general-order derivative of an infinitely differentiable
function

Theorem 3. Let f (x) and all its derivatives be smooth and f (x) and f (q)(x) be expanded as
in (5) and (6) respectively, and for a positive integer �, let

x� dqf (x)

dxq
= I q,� (16)

and if we write

I q,� =
∞∑
i=0

b
q,�

i L
(α)
i (x) (17)
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then

b
q,�

i =




∑�−1
k=0 a�,k+�−i (k)a

(q)

k +
∑i

k=0 a�,k+2�−i (k + �)a
(q)

k+� 0 � i � �∑�−1
k=i−� a�,k+�−i (k)a

(q)

k +
∑i

k=0 a�,k+2�−i (k + �)a
(q)

k+� � + 1 � i � 2� − 1∑i
k=i−2� a�,k+2�−i (k + �)a

(q)

k+� i � 2�.

(18)

Proof. Equations (6), (9) and (16) give

I q,� =
∞∑

k=0

a
(q)

k

2�∑
j=0

a�,j (k)L
(α)

k+�−j (x). (19)

By letting i = k + � − j , (19) may be written in the form

I q,� =
�−1∑
k=0

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)L
(α)
i (x) +

∞∑
k=�

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)L
(α)
i (x)

=
∑

1

+
∑

2

(20)

where ∑
1

=
�−1∑
k=0

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)L
(α)

i (x)

∑
2

=
∞∑

k=�

a
(q)

k

k+�∑
i=k−�

a�,k+�−i (k)L
(α)
i (x).

Considering
∑

1 first,

∑
1

=
�−1∑
k=0

a
(q)

k

−1∑
i=k−�

a�,k+�−i (k)L
(α)

i (x) +
�−1∑
k=0

a
(q)

k

k+�∑
i=0

a�,k+�−i (k)L
(α)

i (x)

=
∑
11

+
∑
12

. (21)

Clearly,

∑
11

=
�−1∑
k=0

a
(q)

k

−1∑
i=k−�

a�,k+�−i (k)L
(α)
i (x) =

�−1∑
k=0

a
(q)

k

�−k∑
i=1

a�,k+�+i (k)L
(α)
−i (x)

hence ∑
11

= 0. (22)

Now,

∑
12

=
�−1∑
k=0

a
(q)

k

k+�∑
i=0

a�,k+�−i (k)L
(α)
i (x)

=
�∑

i=0

�−1∑
k=0

a
(q)

k a�,k+�−i (k)L
(α)
i (x) +

2�−1∑
i=�+1

�−1∑
k=i−�

a
(q)

k a�,k+�−i (k)L
(α)
i (x)

hence,

∑
12

=
2�−1∑
i=0

�−1∑
k=max(0,i−�)

a
(q)

k a�,k+�−i (k)L
(α)

i (x). (23)
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Substitution of (22) and (23) into (21) yields

∑
1

=
2�−1∑
i=0

�−1∑
k=max(0,i−�)

a
(q)

k ak+�−i (k)L
(α)
i (x). (24)

When considering
∑

2, if one takes k + � instead of k, it is not difficult to show that

∑
2

=
∞∑
i=0

i∑
k=max(0,i−2�)

a
(q)

k+�a�,k+2�−i (k + �)L
(α)
i (x). (25)

Substitution of (24) and (25) into (20) gives the required results (18) and completes the proof
of theorem 3. �

6. Application to ordinary differential equations with varying coefficients

Let f (x) be an infinitely differentiable function defined on [0,∞) and having the Laguerre
expansion (5), and assume that it satisfies the linear nonhomogeneous differential equation of
order n,

n∑
i=0

pi(x)f (i)(x) = p(x) (26)

where p0, p1, . . . , pn �= 0 are polynomials of x, and the coefficients of the Laguerre series of
the function p(x) are known; formulae (7), (9) and (18) enable one to construct, in view of
equation (26), the linear recurrence relation of order r, namely

r∑
j=0

αj (k)ak+j = β(k) k � 0 (27)

where α0, α1, . . . , αr (α0 �= 0, αr �= 0) are polynomials of the variable k. The interested
reader is referred to Doha (1998) for a similar derivation of (27) when the basis of expansion
is ultraspherical polynomials.

An example dealing with a nonhomogeneous differential equation is considered in order
to clarify application of the results obtained.

Example. Consider the nonhomogeneous differential equation

2xy ′′ + (1 + 4x)y ′ + (1 + 2x)y = e−x y(0) = 0 y ′(0) = 1. (28)

If e−x is expanded in the form

e−x =
∞∑
i=0

fiL
(α)
i (x) (29)

then

fi = 1

2i+α+1
(30)

and if y(x) is expanded in the form

y(x) =
∞∑
i=0

aiL
(α)
i (x)

then by virtue of formulae (16) and (17), equation (28) takes the form

2b
2,1
i + b

1,0
i + 4b

1,1
i + b

0,0
i + 2b

0,1
i = fi i � 0. (31)
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Formula (18) gives

b
q,1
i = ∑i

k=i−2 a1,k+2−i (k + 1)a
(q)

k+1 q = 0, 1, 2

b
q,0
i = a

(q)

i q = 0, 1

}
i � 0. (32)

Substitution of relations (32) into equation (31), and making use of formulae (7) and (10)—
after some manipulation—yields the following recurrence relation:

2i[(2i + 3)2 + 2α]ai−1 − [16i3 + 4i2(9 − 2α) − 16iα − 4α(α + 4) − 23]ai

− [40i3 + 4i2(10α + 43) + 2i(62α + 111) + (2α + 5)(10α + 13)]ai+1

+ 2[48i3 + 4i2(8α + 45) + 88i(α + 2) + 2α(8α + 29) + 25]ai+2

− 8(i + α + 3)[(2i + 1)2 + 2α]ai+3

= [(2i + 1)2 + 2α]fi+2 − 2[4i(i + 2) + 2α + 1]fi+1

+ [(2i + 3)2 + 2α]fi i � 0. (33)

The complete solution of this example may be obtained by solving the recurrence relation
(33). What is worth noting is that the analytical solution for this recurrence relation is given
explicitly by

ai = 1 + α − i

2α+i+2
i � 0. (34)

An analytical solution such as (34) is not generally easy to obtain. The alternative
approach for solving (33) can be obtained by using the well-known methods of Miller and
Oliver as well as modifications and generalizations of these methods (see Jirari (1995), Luke
(1969), Oliver (1988), Scraton (1972), Wimp (1984) and Weixlbaumer (2001)).

7. Recurrence relations for connection coefficients between Jacobi and Laguerre
polynomials

Suppose V is a vector space of all polynomials over the real or complex numbers and Vm is the
subspace of polynomials of degree less than or equal to m. Suppose p0(x), p1(x), p2(x), . . .

is a sequence of polynomials such that pn(x) is of exact degree n; let q0(x), q1(x), q2(x), . . .

be another such sequence. Clearly, these sequences form a basis for V . It is also evident that
p0(x), p1(x), . . . , pm(x) and q0(x), q1(x), . . . , qm(x) give two bases for Vm. While working
with finite-dimensional vector spaces, it is often necessary to find the matrix that transforms
a basis of a given space to another basis. This means that one is interested in the connection
coefficients ai(n) that satisfy

qn(x) =
n∑

i=0

ai(n)pi(x). (35)

The choice of pn(x) and qn(x) depends on the situation. For example, suppose

pn(x) = xn qn(x) = x(x − 1) · · · (x − n + 1)

then the connection coefficients ai(n) are Stirling numbers of the first kind. If the roles of
these pn(x) and qn(x) are interchanged, we get Stirling numbers of the second kind. These
numbers are useful in some combinatorial polynomials (see Abramowitz and Stegun (1970),
pp 824–5).

Usually, little can be said about these connection coefficients. However, there are some
cases where simple formulae can be obtained (see, for instance, Andrews et al (1999)). The
aim of this section is to describe a simple procedure (based on the results of theorem 3) in
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order to find recurrence relations, sometimes easy to solve, between the coefficients ai(n)

when pi(x) = L
(α)
i (x) and qn(x) = P

(γ,δ)
n (x), where L

(α)
i (x) and P

(γ,δ)
n (x) are the Laguerre

and Jacobi orthogonal polynomials. This gives an alternative way to be compared to the
approaches of Koepf and Schmersau (1998), Lewanowicz (2002), Lewanowicz and Woźny
(2001), Lewanowicz et al (2000), Ronveaux et al (1995), Godoy et al (1997) and Sánchez-
Ruiz and Dehesa (1998). A nonrecursive way to approach the problem in the case of classical
orthogonal polynomials of discrete variable can be found in Gasper (1974). Moreover, other
authors have considered the problem from a recursive point of view (see Koepf and Schmersau
(1988)), or even in classical discrete and q-analogues (cf Álvarez-Nodarse et al (1997) and
Álvarez-Nodarse and Ronveaux (1996)).

7.1. The Jacobi–Laguerre connection problem

The link between P
(γ,δ)
n (x) and L

(α)
i (x) given by (35) can easily be replaced by a linear relation

involving only L
(α)

i (x) using the Jacobi differential equation, namely,

(1 − x2)D2P (γ,δ)
n (x) + [δ − γ − (2 + δ + γ )x]DP(γ,δ)

n (x) + n(1 + γ + δ + n)P (γ,δ)
n (x) = 0

(36)

by substituting

P (γ,δ)
n (x) =

∞∑
i=0

ai(n)L
(α)
i (x) (37)

with an+1(n) = an+2(n) = · · · = 0. By virtue of formulae (16) and (17), equation (36) takes
the form

I 2,0 − I 2,2 − (2 + γ + δ)I 1,1 + (δ − γ )I 1,0 + n(1 + γ + δ + n)I 0,0 = 0

or

b
2,0
i − b

2,2
i − (2 + γ + δ)b

1,1
i + (δ − γ )b

1,0
i + n(1 + γ + δ + n)b

0,0
i = 0. (38)

Formula (18) gives

b
2,0
i = a

(2)

i (n) b
1,0
i = a

(1)

i (n) b
0,0
i = ai(n) i � 0 (39)

b
1,1
i =

i∑
k=i−2

a1,k+2−i (k + 1)a
(1)

k+1 b
2,2
i =

i∑
k=i−4

a2,k+4−i (k + 2)a
(2)

k+2 i � 0. (40)

Substitution of relations (39) and (40) into equation (38) and making use of formulae (7) and
(10)—after some little manipulation—yields the following recurrence relation:

(n − i)(n + i + γ + δ + 1)ai(n) = [2(n − i − 1)(n + i + γ + δ + 2) − (i + α + 1)

×(2i + γ + δ + 2) + δ − γ ]ai+1(n) + [(i + α + 2)(5i + 2γ + 2δ + α + 9)

− (n − i − 2)(n + i + γ + δ + 3) + γ − δ − 1]ai+2(n) − (i + α + 3)

×(4i + γ + δ + 2α + 10)ai+3(n) + (i + α + 3)(i + α + 4)ai+4(n)

i = n − 1, n − 2, . . . , 0 (41)

which is of order 4. It is to be noted here that the fourth-order recurrence relation (41) generates
the coefficients ai(n) of (30) by recurring backward with the initial conditions given by

an+s(n) = 0 s = 1, 2, 3 and an(n) = (−1)n�(2n + γ + δ + 1)

2n�(n + γ + δ + 1)
.
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The coefficient an(n), which only depends on the relative normalization of P
(γ,δ)
n (x) and

L(α)
n (x), has been easily obtained by identification of the highest power in expansion (37).

The solution of (41) is

ai(n) =
n∑

j=i

Aj (n)Bji (42)

where

Aj(n) = 2j (1 + α)j (1 + γ )n

(1 + γ + δ)n

n∑
k=j

(k−j) even

(−1)
2n−j−k

2 (δ − γ )n−k(1 + γ + δ)n+k(1 + 2γ + 2k)

k!(n − k)!(1 + 2γ )n+k+1
(

k−j

2

)
!

×
(

γ +
1

2

)
j+k

2

2F0

(
−

(
k − j

2

)
, γ +

k + j + 1

2
,−, 1

)
(n − j) even

(43)

Bji = (−j)i

(1 + α)i
2F2


− 1

2 (j − i), − 1
2 (j − i − 1);

; − 1
4

− 1
2 (α + j), − 1

2 (α + j − 1);


 . (44)

Now, we consider the ultraspherical-Laguerre connection problem and its consequences,
Chebyshev of the first kind-Laguerre, Chebyshev of the second kind-Laguerre and Legendre-
Laguerre. These are given in the following corollaries:

Corollary 2. In the connection problem

C(λ)
n (x) = n!�

(
λ + 1

2

)
�

(
n + λ + 1

2

)P
(λ− 1

2 ,λ− 1
2 )

n (x) =
n∑

i=0

ai(n)L
(α)
i (x)

with γ = δ = λ − 1
2 ,− 1

2 < λ < ∞, C(λ)
n (1) = 1, where C(λ)

n (x) are the ultraspherical
polynomials, the ai(n)-coefficients are given by

ai(n) =
n∑

j=i

Aj (n)Bji (45)

where

Aj(n) =
2j (1 + α)jλ j+n

2(
n−j

2

)
!(2λ)n

2F0

(
−

(
n − j

2

)
, λ +

n + j

2
,−, 1

)
(n − j) even.

Corollary 3. In the connection problem

Tn(x) = C(0)
n (x) =

n∑
i=0

ai(n)L
(α)
i (x)

where Tn(x) are Chebyshev polynomials of the first kind, the coefficients ai(n) are given by

ai(n) =
n∑

j=i

Aj (n)Bji (46)

where

Aj(n) = 2j (1 + α)j(
n−j

2

)
!

2F0

(
−

(
n − j

2

)
,
n + j

2
,−, 1

)
(n − j) even.
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Corollary 4. In the connection problem

Pn(x) = C
( 1

2 )
n (x) =

n∑
i=0

ai(n)L
(α)

i (x)

where Pn(x) are Legendre polynomials, the coefficients ai(n) are given by

ai(n) =
n∑

j=i

Aj (n)Bji (47)

where

Aj(n) =
2j (1 + α)j

(
1
2

)
j+n

2(
n−j

2

)
!n!

2F0

(
−

(
n − j

2

)
,
n + j + 1

2
,−, 1

)
(n − j) even.

Corollary 5. In the connection problem

Un(x) = (n + 1)C(1)
n (x) = (n + 1)

n∑
i=0

ai(n)L
(α)

i (x)

where Un(x) are Chebyshev polynomials of the second kind, the coefficients ai(n) are given
by

ai(n) =
n∑

j=i

Aj (n)Bji (48)

where

Aj(n) = 2j (1 + α)j
(

n+j

2

)
!(

n−j

2

)
!n!

2F0

(
−

(
n − j

2

)
,
n + j + 2

2
,−, 1

)
(n − j) even.

Note. The coefficients Bji in relations (45)–(48) are defined by (44).

7.2. The Hermite–Laguerre connection problem

In this problem

Hn(x) =
n∑

i=0

ai(n)L
(α)

i (x) (49)

where Hn(x) are Hermite polynomials, which satisfy the differential equation

D2Hn(x) − 2xDHn(x) + 2nHn(x) = 0.

The coefficients ai(n) satisfy the third-order recurrence relation

2(n − i)ai(n) = 2(2n − 3i − α − 3)ai+1(n) − (2n − 6i − 4α − 11)ai+2(n)

− 2(i + α + 3)ai+3(n) i = n − 1, n − 2, . . . , 0 (50)

with an+s(n) = 0, s = 1, 2 and an(n) = (−1)n2nn!. The solution of (50) is

ai(n) = (−n)i2n(1 + α)n

(1 + α)i
2F2


− 1

2 (n − i), − 1
2 (n − i − 1);

; − 1
4

− 1
2 (α + n), − 1

2 (α + n − 1);


 .
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Remark 1. It is worth mentioning that the recurrence relations (41) and (49) are minimal (i.e.
the shortest ones in order) for the connection coefficients in (37) and (49) respectively. These
are in agreement with the results of Godoy et al (1997), displayed in table 1, p 263.

Remark 2. It should be mentioned that our goal here is to emphasize the systematic character
and simplicity of our algorithm, which allows one to implement it in any computer algebra
(here the Mathematica (1999) symbolic language has been used).

To end this paper, we wish to report that this work deals with formulae associated
with the Laguerre coefficients for the moments of a general-order derivative of differentiable
functions and with the connection coefficients between Jacobi–Laguerre and Hermite–
Laguerre polynomials. These formulae can be used to facilitate greatly the setting up of
the algebraic systems to be obtained by applying the spectral or pseudospectral methods for
solving differential equations with polynomial coefficients of any order.
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